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ABSTRACT

The goal of the research is to develop a multiple model extended Kalman filter to perform simultaneous target
identification and tracking using high range resolution (HRR) radar measurements. The idea is to use a multiple
model estimator (MME) with multiple Kalman filters (one for each target type) to process HRR measurements. The
resulting algorithm will provide estimates of the target kinematics (e.g. position, velocity, and possibly acceleration)
and predict model probabilities, which correspond to the target probability. Hence, the approach proposed here is
named the automatic target recognition (ATR) and tracking filter.

1. 0 INTRODUCTION

In most modern avionics systems, target tracking and target identification are typically dealt with as independent
systems. However, we believe that there exists significant cross correlation in the information between these systems.
Consequently, tightly coupling them should provide significant improvement in the overall performance. This paper
shows one possible approach for correctly handling the cross correlations that might exists between target tracking
and identification algorithms.

To motivate the problem further, consider the following example where kinematic information might help
identification of a target. Assume we know that a given target is moving 400 Knots, then we can conclude that it is
not likely a tank as they don’t move that fast. Further, as shown in [1], kinematic information can be used to reduce
the search space of a conventional template based ATR algorithm. Here kinematic information can be mapped to an
approximate aspect angle. As a result, we only need to search the template space around the indicated aspect angle.

Likewise, target identification can aid tracking algorithms. For example, target type information can be used to
significantly improve the process of associating radar observations with target tracks in a tracking algorithm. If we
know the types of two closely spaced (or crossing) targets, it becomes easier to associate the observation to the
correct target track. Further, as will be shown in this paper, it is possible to extract a pseudo-cross sectional length
measurement from an HRR profile that 1s usually used for automatic target recognition. Assuming a specific target
type, this “length” measurement can be mapped to a set of possible aspect angles. It will be shown that this observed
aspect angle is correlated to the kinematics of the target thus providing an additional measurement for the tracking
filter.

1.1 APPROACH

In approaching this problem, it is important to note that the problem consists of estimating continuous space
kinematics and discrete space target type. Hence the approach should be an optimal one that is capable of dealing
with both types of information. One such unified approach is the multiple model estimator presented in [2,3]. In this
paper, we will investigate using the multiple model estimator to solve this problem.

Here we develop a multiple model extended Kalman filter to perform simultaneous target identification and
tracking using high range resolution (HRR) radar. The idea is to use multiple Kalman filters (one for each target
type) to process HRR measurements to estimate target kinematics (e.g. position, velocity, and possibly acceleration)
and model probabilities, which correspond to the target probabilities.
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The ATR and tracking filter algorithm takes advantage of a priori information such as the knowledge that one
has that the velocity vector for ground targets 1s out the nose of the vehicle. In the case of air targets the acceleration
vector is out the top of the aircraft when one assumes coordinated turns. Each filter takes as it’s input the target’s
cross sectional length measurement (provided by the HRR) and for a given target type assumed by each filter maps it
to some set of target aspect angles. The filter processes the aspect angle that is most consistent with the kinematic
estimate provided by that filter. If over time the aspect angles are very consistent with a target kinematics then the
residuals for that filter will become very small. Likewise, if the aspect angles are not consistent with the kinematic
information then the residuals become large. Therefore, the probability for each model (or target) is computed based
on the size of the residuals for the given filter model.

The ATR and tracking filter discriminates between target types by constraining the kinematic estimate within the
range of possibilities that the target is capable of performing. For example, we know that a tank cannot perform a 4g
maneuver and move at 400 Knots. Consequently, we constrain the filter model for the tank such that accelerations
cannot exceed the acceleration and velocity constraints for the given vehicle. If the HRR observations require
acceleration and velocity estimates that exceed these constraints, then again the residuals for the given model become
large thus reducing the target likelihood.

1.2 RELATED LITURATURE

The multiple model estimator approach presented in this paper is closely related to a method presented by Libby
in [4] and Libby and Maybeck in [5]. Here Libby and Maybeck suggest using a multiple model estimator for
processing synthetic aperture radar (SAR) measurements. In this research, the aspect angle is extracted using SAR
measurements of length and width of the target.

Another related approach is presented by Jacobs and O’Sullivan in [6] and in the work of Kastella in [7]. The
approach is based on the use of a nonlinear filter. Here the probability density for the target kinematic state and
target type is computed by propagating the target’s state via the Fokker-Plank equations. Given incoming radar
measurement, the probability density is updated using Bayes rule.

Although the nonlinear filter approach correctly deals with system non-linearities and non-Gaussian
probabilities, it does suffer a few problems for this application. First, the target kinematics are well characterized by
linear systems and Gaussian distributions, which are easily handled by a Kalman filter. Further, the Fokker-Plank
equations are inherently applicable only to continuous space systems. Thus the approach does not correctly handle
the fact that this is a combined continuous and discrete space problem. Finally, the solution to the Fokker-Plank
equation is very difficult to obtain since the resulting densities are usually complex in nature making them difficult to
parameterize. To capture these complex density functions most solutions to the Fokker-Plank equations require the
state space to be discretized. This results in very large computational complexity and approximate solutions (i.e. the
solution is less than optimal).

1.3 PAPER OVERVIEW

This paper is organized in the following fashion. Section 2 presents an overview of HRR radar measurements
and presents a discussion of the errors that corrupt these measurements. Section 3 presents the architecture of the
multiple model estimator (MME). Section 4 presents both the propagation and update equations that must be
implemented in the design of the extended Kalman filters used in the MME. Section 5 presents some simulation
results for both the ATR and tracking filter and provides a comparison to a similar conventional tracking algorithm.
Finally, Section 6 presents some concluding remarks and discusses future research directions.

2. 0 HIGH RANGE RESOLUTION RADAR MEASUREMENTS

High range resolution radar combined with monopulse radar processing is capable of measuring range, range
rate, azimuth angle, and elevation angles along the line-of-sight vector from the aircraft to the target. These
observations are the ones traditionally used in a tracking filter. In addition to these, we will extract one other
observation for use in the ATR and tracking filter that we call the pseudo cross sectional length of the target. Next,
we discuss some of these measurements in detail.



The vector geometry defining the azimuth angle (4) and elevation (F) angle is shown in Figure 1. Here, the
azimuth angle 1s defined to be the angle between a vector pointing along the y-axis and the line-of-sight vector. The
elevation angle is defined to be the angle between a vector pointing along the z-axis and the line-of-sight vector. The
coordinate frame shown in Figure 1 will be discussed in more detail later in this section.
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Figure 1. Radar geometry.

The “pseudo” cross sectional length, denoted Lc, is extracted from the HRR profile. As shown in Figure 2, the cross
sectional length 1s obtained by observing the number of range bins in sequence whose value exceeds some threshold.
This measurement can be obtained somewhat accurately as a result of Doppler filtering the background clutter and
coherent integration of multiple radar pulses in HRR measurements. However, we refer to it as the “pseudo” cross
sectional length as it can sometimes be severely corrupted by radar effects such as multipath.
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Figure 2 — A typical HRR profile.

For a given target type and depression angle, the cross sectional length can be mapped to a set of possible aspect
angles. As shown in Figure 3, the aspect angle for ground based targets is the angle between the vector pointing out
the nose of the target and the line of sight vector projected onto the ground plane. Figure 4 illustrates a case for the
M35 truck where a pseudo cross sectional length of 30 maps to a set of four possible aspect angles.

The observed aspect angle that is closest to the one predicted by the Kalman filter for the M35 truck 1s the one
that is processed by the ATR and tracking filter. This point should become clear in the next section of the paper.
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Figure 3 - Aspect angle geometry.
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Figure 4 — A plot of the target length profile as a function of aspect angle for a M35 truck.

2.1 MEASURMENT TRUTH MODELS

As previously mentioned, a high range resolution radar coupled with monopulse radar processing is capable of
measuring range, range rate, azimuth angle, elevation angle, and pseudo cross sectional length to a given target.
These measurements are not perfect and are typically modeled as the sum of true value and the measurement errors.

Hence, the range measurement, denoted z,, and range rate measurement, denoted z;, are modeled by the following
equations:

zr:r+8rCL+r8C+vrQ Ve ¥y (D
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respectively, where r is the true range, I is the true range rate, and the other error terms are described in Table 1. For
an electronically scanned array antenna (ESA), which we now assume, the measured azimuth angle, denoted z,, and

elevation angle, denoted zg, are modeled by the following equations:

ZA= A+ OATEMP * VAN T VARL T VAP T VACC  YAMS T YATN T VAQ T YARAD ®
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where A and E are the true azimuth and elevation angles, respectively, and the other error terms are described in
Table 1.

Since we had real measured HRR profiles to use in this study, it was not necessary to develop a stochastic model
for the pseudo cross sectional length measurement. The data we used consisted of HRR profiles for aspect angles on
the interval [0, 360] degrees at approximately 1 to 2 degree increments for both 15 and 17-degree depression angles.
Since we did not have HRR profiles for all depression angles, we assumed that the true depression angle remained at
17 degrees for the entire simulation and the measured depression angle was 15 degrees. What is suggested by this
approximation is that the targeting aircraft is changing pitch in such a way that the depression angle is constant.
Although this assumption is not very realistic; we believe it is an approximation that does not severely effect the final
result.

3.0 ARCHITECTURE OF THE ATR AND TRACKING FILTER

In the ATR and tracking filter, it is assumed that the system dynamics obeys one of a finite number of fixed
models (one for each target type). Figure 5 shows the architecture for the ATR and tracking filter. The overall output

estimate, usually referred to as the combined estimate, is the weighted sum of the estimates from each model.
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Figure 5. ATR and tracking filter architecture.

Table 1. Summary of Radar Error Budget

dre Range Clock Error ’ 0.01 feet ’ bias




oC Propagation Speed Error 10 PPM bias
drpy Range Rate Doppler Error 0.001 ft/s bias
OF Frequency Error 20 PPM bias
\ 0 Range Quantization Error Ar/ -\/E white
Vip Range Timing Error’ T4 . white
A oT Range Miscellaneous Errors? 0.5 Ar white
VfQ Range Rate Quantization Error Ar/ \/1_2 white
VfT Range Rate Timing Error T4 . white
VfQT Range Rate Miscellancous Errors® 0.5 A white
SATEMP Azimuth Temperature Induced Errors and Antenna Misalignment. 1.08 mrad bias
SETEMP Elevation Temperature Induced Errors and Antenna Misalignment, 1.08 mrad bias
VAMA Azimuth Mechanical Alignment Error 0.30 mrad white
VEpa Elevation Mechanical Alignment Error 0.30 mrad white
VApL Azimuth Flexure Error 0.10 mrad white
VEpp Elevation Flexure Error 0.10 mrad white
v Apy Azimuth Radome Phase Uniformity Error 0.35 mrad white
VEPU Elevation Radome Phase Uniformity Error 0.35 mrad white
VA cc Azimuth Rx Channel Cross Coupling Error 0.15 mrad white
VR cc Elevation Rx Channel Cross Coupling Error 0.15 mrad white
VA S Azimuth Monopulse Slope Error 0.10 mrad white
VEpy S Elevation Monopulse Slope Error 0.10 mrad white
VATN Azimuth Thermal Noise 0.20 mrad white
VETN Elevation Thermal Noise 0.20 mrad white
VA Q Azimuth Quantization Error 0.20 mrad white
VR Q Elevation Quantization Error 0.20 mrad white
VARAD Azimuth Radome Error 0.40 mrad white
VERAD Elevation Radome Error 0.40 mrad white

3.1 FILTER MODEL

In this research, we assume that the fixed models are in the form of a stochastic difference equation describing the
system behavior. For example, the model {M;;j=1,...,N} is given by

Tq is the processing time delay (1 ms).

Ar is the range resolution of the radar (100 feet).
The range rate resolution Ar is a function of the angular rate of the aircraft about the target, denoted ®, and the azimuth resolution of

the radar, denoted Aaz, such that Ar=mAaz. For the results presented in this paper the azimuth resolution was (100 feet)



QJ- (k+1) = cb%— (k) + Taj k), (%)

where %— (k) € IR1 is the filter’s state vector, 3 (k) € RM is the fixed input,. In the truth model 3 (k) is assumed to be

corrupted by a white noise vector w(k) € IR™ such that w(k) ~ N(0,Q). The matrices ® € R and T ¢ RN gre
the state transition matrix and the measurement matrix, respectively.

The measurements or observations are modeled as non-linear functions of the state. For example assume that the
j™ filter uses a non-linear estimate of the measurements Then it can be expressed by the following equation

2i(k) = hy(X k). (6)

When designing an extended Kalman filter, it is necessary to linearize the measurement equations to obtain the
filter’s observation matrix, denoted H;. The filter’s observation matrix is obtained by computing a first order Taylor
series approximation of the filter’s estimate of the measurement equations. For example, consider the general non-
linear estimate of the measurement given by Equation 5. The first order Taylor series approximation of this equation
is given by the following

. Ohi(Xi.k)
2i(k) = 7jo + —LA— 8x;, Y
%]

where Zjo is the true value of the measured quantities (e.g. true range). Equation 7 can be written more compactly

A _ A
Zj(k) =Zjo + HJ SXj ()
where
A
. ahl- (Xl',k)
H A 9)
] o
J
3.2 KALMAN FILTERING

The updates for the j‘h, {/=1,N}, filter model are computed via the Kalman filter equations using the mixed
estimate and covariance

xj(klk-1) = chj(k-l k-1) + Taj(k) (10)
Pj(klk-1) = CDPj(k-l|k-l)cDT +TQ;T (11)
Si(k) = Hij(k|k-l)H;f + Ry (12)
vj(k) = 7(K) - zj(kk-1) (13)
T -1
K;(k) = Pj(k|k-1)Hj sj (14)
P;(klk) = Pj(klk-1) - Kj(K)H;P;(klk-1) (15)
Qj(k|k) - >A<j(k|k-l) + K;(k)vj(k) (16)

where Xj (klk)e IR™ is the state estimate for this model, Pi(klk)e IR™X™ is the covariance of the state estimate error,
Vj(k)e IRM jg the innovation process, Sj(k)e [RMXM i the covariance of the innovation process, and

K;(k)e IR?XM jg the Kalman filter gain.



3.3 MODEL PROBABIITY

The likelihood function of model M/ {j = 1,...N} at time k, under the linear Gaussian assumption is

A(K) = plzi(R|ZX M1 = plvi(0] = NIvj k)0, (K], (17)

where N(x,;n1,P) is a Gaussian density function of on x with mean m and covariance P. The posterior probability of
model j being correct is obtained recursively

Ai(k) witk-1)
(k) :—-‘—?— i=1,...N, (18)

where the normalizing constant ¢ is given by
N
c= Y A®uk-1). (19)
=1
This recursive algorithm is started at ,uj(O) specified a priori.

3.4 ESTIMATE AND COVARIANCE COMBINATION

The estimated probability density function of the system state is the weighted average of the N model estimates,
1.e. the overall mean is given by

N
x(dk) = 3 ()% (KK), (20)
=1
and overall covariance given by
N
P(klk) = 2 Ki(OP; (klk). Q2D
=1

4.0 ATR AND TRACKING FILTER DESIGN

In tracking systems it is possible to track targets in many possible coordinate systems. For this paper we chose to
track targets in a Cartesian coordinate system attached to the aircraft’s body. Tracking in body frame coordinates is
useful when one is concerned only with the location of the target relative to the aircraft. However, if one desires to
pass the target’s location to another user (e.g. the case of a hunter-shooter scenario), it becomes necessary to express
the target location in some commonly known coordinates such as an earth-centered earth-fixed coordinate system. In
this case 1t would be necessary to model and simulate errors related to our navigation system. As depicted in Figure
1, the body frame has its origins at the aircraft's center such that x points out the nose of the aircraft, y points out the
right side of the aircraft, and z points out the bottom of the aircraft. In this section, we present the propagation and
measurement equations for the extended Kalman filter design under the

assumption that we are tracking in body frame coordinates. This includes a presentation of the derived linear
observation matrix H.

4.1 KALMAN FILTER PROPAGATION EQUATIONS



In this research we assume that the fixed models are of the form of nearly constant velocity models with a bias
corresponding to acceleration. In other words, the stochastic difference equation describing the system behavior for
model {M;;j=1,...,N} is given by Equation (5) where

Xj(K) = [px(k) Py(K) (k) Vy (k) Vy (k) V,(K)] (22)
is the filter’s state vector consisting of the target’s position and velocity component and

i(K) = [aj (k) ajy (k) aj ()] T (23)

is the acceleration vector. The state transition matrix ® € RO*0 and measurement matrix I' € RO>3 are given by

T2
I3x3 TI3x3 5133
o= , and

0 I r= ’
3x3 TI3X3

respectively, where T is the discrete time sample period and Ly, € R is an identity matrix.

4.2 FILTER’S ESTIMATE OF HIGH RANGE RESOLUTION RADAR MEASUREMENTS

The filter’s estimate of the range, denoted ?, from the aircraft to the target is the magnitude of the line of sight
vector estimate, denoted f) Thus range is found by computing the 2-norm of the line of sight vector.

NS o

The range rate is found by computing the time derivative of the range. Upon performing this operation we obtain
- TR 03)

where ﬁp is the unit look vector between the aircraft and the target and v is the relative velocity vector. The unit
look vector 1s expressed as:

A A
A P P

U, ="~ = . (26)
PIpl AT pl

To compute the filter’s estimate of the azimuth and elevation angles, consider the unit vectors ﬁpy and ﬁpz

which point in the body frame y and z directions, respectively. These vectors are expressed as

tpy = [0 1 01T 27)
iy, =10 0 17T, (28)

The relationship between the vectors of interest and the filter’s estimate of the azimuth and elevation angles are given
by



cos(A)= (8T iy (29)
cos(E)= (tip)T iy, (30)

A A
Solving for A and E yields

A = cos-] [(ﬁp)T ﬁpy] (3D
E = cos”! ()T ] (32)

A A
where both A and E lie in the interval [0, w] radians.

A
To compute the filter’s estimate of the aspect angles, denoted 8, we must first convert the position vector
f) to heading frame coordinates. The heading frame is a local level frame whose origin is located at the
aircraft’s center. The xI' axis points in the direction of the local level component of the velocity vector. The Zh

axis points down toward the reference ellipsoid and the yh axis is tangent to the reference ellipsoid. The body
frame defines the attitude of the aircraft's body relative to the heading frame via roll, pitch, and yaw angles ¢y,

oy, and ¢, that are estimated by the navigation system. The coordinate transformation from body frame to

heading frame coordinates is given below. In order to write the results compactly, we abbreviated cos by C
and sin by S.

CozCay  CogSoySoy - SoCoy  CogSoyCory + SouSoug
CE =| SozCoy SozSoySoy + CoyCoy  SoSoyCoy - CoySoy (33)
-Soy CowySoy CoryCoy

To avoid modeling and simulating a full blown navigation system, we assumed that this coordinate transformation
was known perfectly in the simulation results presented later in this paper.

The line of sight vector, f), in body frame coordinates can be transformed to heading frame vector, denoted f)h,
by the following equation

h
p'=C,p (34)

At this time, we will make a simplifying assumption that the ground plane is level at the target. This assumption
could be avoided if we had digital terrain and elevation data (DTED) available to determine the gradient vector. Now

consider the vector f’xya which is the line of sight vector projected onto the ground plane. This vector is expressed as

h Ah
Pxy = [, P, 01" (35)

h h
where f)x and ﬁy are the x and y components, respectively of the line of sight vector, f)h, in heading frame

coordinates. Now normalize this vector to obtain a unit vector, Upxy pointing in the same direction.

A p

u = .
pXy
\/ By Bry

The velocity vector in heading frame coordinated is given by



h

yh= Cp ¥ (37)

Thus the unit velocity vector in heading frame coordinates is given by
A 4h

A
&l

(3%)

The relationship between the unit vector, ‘Alpxya the relative unit velocity vector, ﬁv, and the filter’s estimate of the

A
aspect angle, 6, 1s given by
~ A T A
cos(0)= - (pxy) " W (39)

A
Solving for 0 yields

A

0=cos”! [-(ipxy) ! W] (40)

A
where 0 lies on the interval [0, 2r] radians.
Since we do not include error states in the Kalman filter models, the filter’s estimate of the measurements are
simply the filter’s estimate of the range, range rate, azimuth angle, elevation angle, and aspect angle, 1.e.,

Z.=T, 1)

A A

Z;=T , (42)
A

Za=A (43)
A

Zg=FE . (44)
A

59=6 . (45)

4.3 THE FILTER’S OBSERVATION MATRIX

As previously mentioned, when designing an extended Kalman filter, it is necessary to linearize the
measurement equations to obtain the filter’s observation matrix. This observation matrix is obtained by computing a
first order Taylor series approximation of the filter’s estimate of the measurement equations. For the high-resolution
radar measurements presented in this paper, the filter’'s observation matrix is similar to that presented in
[8,9,10,11,12] with the addition of the aspect angle measurement. The components that make up H;, the jth filter’s
observation matrix are summarized in

Table 2. The terms Sf) and & are the position and velocity errors, respectively, for the j filter and all the other
components are computed based on the j™ filter’s estimate.



Table 2 - Filter observation matrix (H;).

A 1 A AT
L= -=I-
- fpip) '] (46)

L

VAl == 1, ) (47)
r sin(A)

N

VET = =212 )] (48)
1 sin(E)

AT - ({\lv) A A T A

Vep = A [I'upxy (upxy) ]:Vepz=0 (49)

[Pyl sin(8)

A T
AT - (upxy) A A
VO, == [1- 1y (uy) ] (50)
[V sin(8)

5.0 SIMULATION RESULTS

In this section, we compare the performance of our ATR and tracking filter to a classical tracking filter
which processes only range, range rate, azimuth angle, and elevation angle. For the simulation results presented in
this section, the target was a M35 truck with the target track shown in Figure 6. In our ATR and tracking filter
design, we used 11 models representing the following target types: a BMP-2 tank, a BTR-70 transport, a HMMVW,
a M1 tank, a M109 gun, a M110 gun, a M113 transport, a M2 tank, a M35 truck, a M548 transport, and a T72 tank.
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Figure 6 — True target track in body frame coordinates.

For both algorithms, we computed the 10 Monte Carlo run average RMS error for the x, y, and z position and
velocity. The results are shown in Table 3. Notice in Table 3 that the average RMS errors for our ATR and tracking
filter is considerably smaller than those obtained for the classical tracking filter. This is especially true in the x and z
directions which we believe is due to the geometry in this scenario.

Table 3 - 10 Monte Carlo Run ensemble average RMS error

Classical Tracking HRR-ATR and
Filter Tracking Filter
X position 153.63 113.09
y position 47.99 4791
Z position 56.40 46.80
x velocity 45.95 14.72
y velocity 22.94 22.88
z velocity 23.60 15.41




Figure 7 shows the 10-run average target probabilities for this simulation. Since the M35 truck and the M2 Tank
are approximately the same size, the algorithm initially had some difficulty in deciding the true target type. However,
as time progressed in the simulation, the ATR and tracking algorithm managed to accrue enough evidence to
correctly identify the target as a M35 truck. The plot in Figure 7 represents typical performance for the ATR and
tracking filter algorithm. We found that for other targets the algorithm performed significantly better or somewhat
worse.

Figure 7 — Plot of 10 run ensemble average of target model probabilities.

6.0 CLOSING REMARKS

The purpose of this paper was to motivate a combined ATR and tracking system and to present the framework
and illustrate the performance of a combined ATR and tracking filter. The results show that, by processing a pseudo
cross-sectional length measurement in the ATR and tracking filter, we obtain improved tracking performance while
gaining information on target type.

Future research will focus on two topics. First, we plan to “fuse” the results of a conventional Gaussian
discriminate HRR-ATR algorithm with that of the ATR and tracking filter algorithm into a unified and tightly
coupled approach. An optimal method for doing this has already been formulated. Doing this should provide
significant improvement to both the model probability and the track accuracies. Second, we plan to formulate a track
association scheme that takes advantage of the target type information provided by the ATR and tracking filter.
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